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Abstract. We compare the Einstein-Brillouin-Keller quantization procedure and the 
canonical quantization of a three-panicle Toda chain with periodic boundary conditions. 
In particular, the transition from very low energies, at which the system may be approxi- 
maled by harmonic oscillators. to intermediate energies is investigated. This is the regime 
of a general integrable nonlinear system, far which we find a Poissonian statistics for the 
energy levels. In  the limit of very high energies we exploit the fact that the system may be 
described essentially by a triangular billiard and thus can derive some exact results. 

1. Introduction 

The increasing interest in theoretical and experimental aspects of quantum chaology 
marks a revival of old quantum theory. It has been mainly induced by more recent 
achievements in the theory of classical Hamiltonian systems, where ordered and chaotic 
motions as well as integrability and ergodicity have become essential ingredients of a 
coherent theoretical framework. It is natural to wonder what the implications of this 
complex scenario might be on the quantum properties of these systems. This is the 
basic question of quantum chaology (Berry 1987). It can be answered by establishing 
some general correspondence between the spectral properties of a quantum Hamil- 
tonian operator and the dynamical features of its classical limit (Bellissard 1985). One 
of the main contributions in this direction is due to Berry and Tabor (1977); they have 
shown that the spectrum of the quantum version of an integrable classical Hamiltonian 
is characterized by a near-degenerate structure, leading to Poissonian statistics for the 
level spacing fluctuations. Apart from exceptions like harmonic oscillators (Bleher 
1990), this is conjectured to be a generic property of any classically integrable system, 
Recently, Sinai (1990) has proved this statistical properties for the quantum spectrum 
corresponding to a geodesic flow on a two-dimensional surface of rotation; moreover 
he has shown that such properties can be correctly reproduced by the semiclassical 
approximation. This result provides a relevant contribution in the direction ofconstruct- 
ing the quantum analogue of the KAM theorem. 

(1 On leave from Department bf Physics, University of Wuppenal, Federal Republic of Germany. 
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In contrast, near-degeneracy appears to be highly suppressed in the quantum spectra 
of ergodic Hamiltonian operators. Numerical analysis on low-dimensional models 
(Berry 1981, Bohigas et al 1984a, b, McDonald and Kaufmann 1979, Casati et a /  1980) 
suggests a close analogy between these dynamical systems and random matrices, where 
eigenvalues statistics is typically Wigner-Dyson like (cf Mehta). 

Due to the theoretical and numerical difficulties in studying these problems in full 
generality, the attention of theoretists has been attracted by simple models. For instance, 
in two-dimensional billiards it has been possible to obtain a deeper understanding 
about the relation between the change in level statistics and the transition from ordered 
to chaotic motion. In particular, the application of semiclassical quantization methods 
to integrable two-dimensional billiards has provided further insight about the origin 
of the near-degeneracy mechanism. 

Similar investigations have been extended to other low-dimensional nonlinear 
Hamiltonian models, which exhibit a transition to chaos in their parameter space (e.g. 
see Pullen and Edmonds 1981, Wintgen and Friedricb 1987). In this respect, classical 
Hamiltonian chains of nonlinearly coupled oscillators are also good candidates for 
exploring in detail some general aspects of quantum chaology. At variance with 
billiards, in the small energy limit these models represent slightly perturbed harmonic 
chains; consequently, their quantum spectrum near the ground state is expected to 
show the peculiar degenerate structure of the harmonic case. The first interesting point 
that we want to discuss in this paper is how such a structure modifies to a near- 
degenerate one in the highly excited component of the spectrum of an integrable chain. 
In such a case one can apply also a semiclassical quantization procedure, which is 
expected to improve as energy increases. In any case, it might be questionable whether 
this approximate method can reproduce the correct statistics of the spectrum. In the 
spirit of the Sinai paper (1990), we also discuss this point comparing the results 
obtained by the Einstein-Brillouin-Keller (EBK) procedure with the predictions of the 
canonical quantization. The object of our investigation is the three-particle Toda lattice. 
It is the simplest non-trivial version of the prototype of nonlinear integrable chains, 
the N-particle equal mass Toda lattice. This model was originally introduced in order 
to study analytic solutions of the equations of motion of nonlinear oscillator systems 
(Toda 1967). Its integrability was proved some years ago (Htnon 1974, Flaschka 1974) 
while the analysis of its dynamical properties in terms of action-angle variables has 
been widely investigated successively (Flascbka and McLaughlin 1976, Ferguson et al 
1982). In any case, no transformation has been found to separate the Hamilton-Jacobi 
equation or the associated Schrodinger equation. Nevertheless, wavefunctions of this 
system have been rigorously studied (Gutzwiller 1980, 1981) by exploiting its symmetry 
properties. 

This paper is organized as follows. In section 2 we briefly report about the 
integrability of the three-particle Toda lattice. The application of the EBK semiclassical 
quantization procedure is described in section 3, where we also comment about the 
validity of this approximate method. Section 4 is devoted to the canonical quantization 
of the reduced Toda Hamiltonian using the basis of the eigenfunctions of two harmonic 
oscillators with equal frequencies. In section 5 we compare the results obtained by the 
two methods, which show a very good agreement over the whole energy scale. Level 
statistics is discussed in section 6 ,  where we present some exact results obtained in the 
high energy limit through a geometrical analogy of the three-particle Toda lattice 
with an equilateral triangular billiard. Conclusions and perspectives are contained in 
section 7. 
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2. The classical system 

We shall consider a three-particle Toda lattice, described by the Hamiltonian 

(2.1) 
P 2  H =  1 -+exp(q,+,-q,)-3 

a = ,  2 

with periodic boundary conditions qlt3 = q,. This system has three independent con- 
served quantities, namely total momentum P, energy E and a third invariant 

13 = -PI ~ 2 ~ 3  + P, exp( q3 - q2)  + p 2  exp(q, - q3)  + p3  exp(q2 - 4 , ) .  
It is straightforward to show that they are in involution, so that the system is completely 
integrable (cf Arnold 1978). Because of translational invariance the two non-trivial 
action variables J , ,  J2 depend on E and I, only. Thus for any value of E, P and 1, 
the phase space can be decomposed into the direct product of a two-dimensional torus 
and a one-dimensional straight line corresponding to the constant growth of the centre 
of mass variable. In any case an explicit expression of the generating function of the 
canonical transformation to action-angle variables is unknown. Nevertheless, one can 
set up a numerical procedure in order to compute the actions corresponding to any 
value of E and I , .  To this end, let us recall some known facts. First, the Jacobi matrix 
L, given by 

b, a, a3 
L=(:; :; ;) (2.2) 

0 a ,  -a3 

( a, -a2 :) 
where a, =fexp((q,+,-q,)/2) and b, =fp, together with the skew symmetric matrix B 

B =  - a ,  0 (2.3) 

satisfy the equation 

L = [ L ,  B ]  (2.4) 
i.e. L and B form a Lax pair (Arnold 1988, Lax 1968). Therefore the eigenvalues of 
L as well as the coefficients of the characteristic polynomial are constants of the motion 
(the latter are related to the invariants explicitly). The characteristic polynomial reads 

Q(A)  = - A 3  +;PA2+ (+(E  +3) -fP*)A + + I 3  + 2a,a,a3. 

Let us label by Az,  i = 1 , .  . . , 6 ,  the consecutive intersections of the third-order poly- 
nomial 

A(A) = -8Q(A) + 2  (2.5) 
with the two horizontal lines passing through *2 (see figure 1). Then, one can compute 
the actions J ,  and J2 as the integrals (Ferguson et a1 1982) 

(2.6) 

Let us notice that the three intersections of A(A) with the upper line are given by the 
eigenvalues of L, whereas those with the lower line are the eigenvalues of L-, which 
is obtained from L by changing the sign of the two elements in the upper right and 
lower left corners (van Moerbecke 1976). 
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Figure 1. The discriminant A(A) (equation ( 2 . 5 ) )  for typical values of the invariants. The 
area of the shaded regions is in one-to-one correspondence with the actions defined in (2.6). 

Thus, although not being algebraic expressions of the phase space coordinates, the 
actions can be computed numerically for each point in phase space. 

3. Semiclassical quantization 

As the classical actions are known, one can use the EBK quantization procedure to 
obtain the semiclassical levels of the system. According to this procedure, a quantal 
energy state labelled by quantum numbers (m, n )  is associated with a torus where J, 
and J2 assume the values ( m + a , / 4 ) h  and ( n + a n / 4 ) h ,  respectively (in the present 
case, since in the limit of vanishing energy the system reduces to a couple of harmonic 
oscillators, the Maslov indices a. and a, are both equal to 2). In principle, the energy 
E,, of such a state can be found in terms of the Hamiltonian written as a function of 
the actions 

(3.1) 

This semiclassical quantization procedure is known to be valid in the limit h + 0. More 
generally, the condition is E /  h = / + m, where I is the quantum number. For fixed E 
this corresponds to highly excited states. However, very often it gives accurate results 
even for the ground state; in particular there are few cases (harmonic oscillators, 
Coulomb potential, rectangular boxes) where it gives all levels exactly. So, a priori, in 
our case we have two exact limits: near the ground state, where the chain behaves as 
if it were harmonic, and at very high energies, where the system is composed by three 
free particles with hard core interaction, In the intermediate region one has to be 
careful, as the deviation from the harmonic potential increases with the energy, which 
is a monotonic function of Ih. Thus, one has to choose h small enough to guarantee 
that the levels with small quantum numbers have small enough energies to be close 
to the harmonic case. 

E,, = H ( J ,  = ( m  +!) h, J2 = ( n  +f)h) .  
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In the specific case of the three-particle Toda lattice, as we have seen previously, 
J, and J2 depend implicitly on the energy and on I,. So we can exploit the procedure 
summarized in (3.1) only numerically by changing the values of E and I, in a controlled 
way, then calculating the corresponding actions and finally retaining those values of 
E for which J, and J2 satisfy the quantization rule. Algorithmically this is equivalent 
to looking for zeros in a parameter plane, with the advantage that for each pair ( m ,  n )  
there exists only one solution. For the sake of simplicity, but without loss of generality, 
we choose P =0, so that the quadratic term in Q ( h )  vanishes. 

By using a Newton algorithm, with this procedure we have computed the first 6000 
levels for h = 1, the first 16 000 levels for h = 0.1, and the first 2500 levels with h = 0.01, 
with an absolute accuracy of 2 x 

4. Canonical quantization 

Although the exact quantization conditions for the three-particle Toda lattice have 
been established (Gutzwiller 1980, 1981), no explicit expression for the spectrum is 
actually available. Anyway, an exact quantization procedure by which, in principle, 
one can straightforwardly obtain as many eigenvalues as one wishes (even though, 
when implemented on a computer, it is only approximate) is the following. 

Consider the Hamiltonian operator H, obtained from the classical Hamiltonian H 
by canonical quantization, and compute all transition elements of f i  in a suitable 
Hilbert space basis. Then, by diagpnalizing the resulting (infinite) matrix one finds, in 
principle, all the eigenvalues of H .  

Operationally, we first reduce the classical system to two degrees of freedom by 
separating the motion of the centre of mass, so that the new Hamiltonian reads (see 
also Ford et al 1973) 

= - + 2 + e x p ( ~ u ) + e x p ( - ~ u + ~ u )  P :  P 2  + e x p ( - d u  - 4 u )  - 3 .  (4.1) 
2 2  

The Taylor series expansion of the potential is 

1 v( U, U )  =$(U2+ U2) +- (U3 -3U2U) +&(U4+2U2U2+ U4)+ HOT. (4.2) 2& 

A natural basis for the quantum Hamiltonian is the direct product of two harmonic 
basis (+(U)} x {+( U)} (with the same frequency w =A). Indeed, this choice guarantees 
the self-adjointness of the operator H. Moreover, in the limit of vanishing energy, i.e. 
when the quadratic part of (4.2) is dominant, the true Toda eigenfunctions are very 
close to the harmonic ones. 

By the way, the first two terms of (4.2) form the Hknon-Heiles system up to rescaling 
of coordinates and time. 

We order the basis elements &(u)+~(u) according to the total harmonic energy 
1 = m + n. More precisely, within a group of I+ 1 degenerate levels of harmonic energy 
( I +  1)ho we choose an ordering in such a way that the states of our basis are given by 
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Of course this is somewhat arbitrary, as a reordering of levels (inside a group) 
corresponds to an exchange of rows and columns of the matrix H, = ( $ ~ l H l $ ~ ) ,  which 
does not affect the eigenvalues of H;,. The matrix H ,  is symmetric, as fi is Hermitian. 

The computation of the transition elements is straightforward, and gives 

(4.4) 

where l= (4- j i  A numericai dirficuity arises from the occurrence of factorials of 
large integers. For h o  < 2 transition elements decrease with increasing difference of 
the quantum numbers in each subspace. Thus, the main entries of the matrix H, are 
close to the diagonal. This merely reflects the fact that the most important contributions 
to the potential come from the first terms of its Taylor expansion (4.2), as each power 
is suppressed by a factor m. 

Now, since H is invariant under the transformation U + -U, it conserves the parity 
of wavefunctions in the u-subspace. Therefore, all transition elements between 
wavefunctions with different parity in u-space are zero. This allows us to reorder the 
elements H ,  into two blocks of given parity in the u-subspace, which can be diagonal- 
ized separately. The corresponding subsets of the basis have m even and m odd, 
respectively. Moreover, the complete spectrum of H, consists of many pairs of degener- 
ate eigenvalues and only few non-degenerate ones: the even parity subset gives the 
whole spectrum without degeneracy, whereas the odd parity subset yields the fellows 
missing to form the degenerate pairs. 

This decomposition into blocks of given parity is still valid for any truncation fi, 
of the infinite matrix. Thus we consider a subset of N basis vectors $k,  k = 1 , .  , , , N, 
where N = ( L +  1)(L+ 2)/2 is chosen in such a way that all basis elements corresponding 
to harmonic energies E k G  E,=  (L+l)hw are included. According to what we have 
said before, all levels are obtained (apart from degeneracy) by diagonalizing only the 
submatrix acting on subspace [ & , O S  k s N, m even), which has rank N,=$L2+ L+  1. 
The number of non-degenerate levels then is [ L / 2 ] +  1 .  

By diagonalization of such a finite fi, with a routine of the NAG library, we find 
N .  eigenvalues. The crucial question is, how many of them are good approximations 
of the eigenvalues of the infinite matrix. From the variational principle it follows 
(Zimmennann et al 1984), that all eigenvalues are upper bounds of the true onest. 
The comparison of the eigenvalues computed for different sizesN of the matrix provides 
an estimate of the number N ,  of reliable eigenvalues$, which depends significantly on 
N and h (see figure 2). Up to this number, curves for different N coincide with high 
precision, and, what is more, the mean deviations are much smaller than the average 
level spacings. Thus the global growth of the energy E ( i )  as a function of the level 
number i shows approximately a square root behaviour (exactly as in the semiclassical 
case) up to i = N,, above which it increases quickly, in the limit i + N faster than 
exponentially. 

t For the ground state this can be seen directly. Let 
R. Then 

as ($o[fi,cs,l$o) = 0, and where $, are the wavefunctions of the complete Hamiltonian and E, its eigenvalues. 
$Using a Cray we have computed up to 4560 eigenvalues in 9 minutes. The limitation is given by central 
memory occupation rather than CPU time. 

be the ground stale of the truncated Hamiltonian 

Eo= cJ0iei$d = (1 a,s.iA - A,.,,Iz e,s , )=x a : ~ ,  > E,  
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Figure2 Theeigenvalues E, ofthe truncated matrix H,i against i, for matrix Sizes N.= 1681, 
2601, 3630, 4775, with f i  =0.1. 

5. Comparison of the two quantization procedures 

There are two semiclassical quantum numbers m, n. From (2.6) and (3.1) it follows 
that the energy is invariant under the exchange of n and m, whereas I ,  changes its 
sign. This amounts to shift the graph of A(A)  in the vertical direction (see figure 1 ) .  
so that the upper and lower areas are reversed. Therefore all levels E,. with m # n 
are painvise degenerate. This means that for any fixed I out of the set of I +  1 levels 
with n + m = I, exactly one level is non-degenerate if I is even, whereas all levels are 
twofold degenerate, if l is odd. 

Apart from this, there is no other symmetry, which may lead to exact degeneracies, 
in our semiclassical procedure. 

In the canonical quantization procedure we have no knowledge about the quantum 
numbers of the system: levels are only ordered according to their magnitude. Neverthe- 
less the structure of degeneracies, which we described in section 4, turns out to be 
exactly the same as the semiclassical one. 

Therefore we are allowed to compare the two methods more efficiently ignoring 
degeneracy. After ordering also the semiclassical levels El by their magnitude, we have 
computed the relative deviation from the canonical eigenvalues Er with the same level 
number 

The results for f i  =0.1 are presented in figure 3, together with the absolute deviations. 
For the three values of f i  considered in section 2 we find the same behaviour: the 
semiclassical levels are always smaller than those obtained by the canonical procedure. 
For the first levels of the spectrum the deviations Si shrink very rapidly with i, up to 
a given value from which on the decrease is linear with very small slope. In the latter 
region, the relative deviation is O(10-4h), whereas the absolute one is 13'(10-~fi~).  This 
good agreement ranges up to a level number i = N,, which depends only on the size 
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Figure 3. The absolute (upper) and relative (lower curve) deviations 6, of the semidasiical 
levels with respect to the canonical ones as a function of the level number i, computed for 
h = O . l  and N,=4551. 

of the matrix used for the diagonalization procedure and is related to N , ,  defined in 
section 3. Beyond N,  one observes an exponential increase of the deviations with a 
rate B( lo-'). This is simply an effect of the truncation in the canonical procedure and 
has nothing to do with the reliability of the semiclassical eigenvalues. 

As finally we are interested in the level statistics, we also investigated the agreement 
of the level spacings AE, = E,+, - E ; ,  i.e. we computed A i  = ( P E :  -AI?:)/-. 

U ,  1 0 ,  

Figure 4. T'he distribution of the deviations A ,  of the level spacings obtained with the two 
methods. The parameters are the same as in figure 3 .  
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The level spacings AE, agree up to less than 1% for most i, single exceptions having 
some percent deviation. The latter reflects the fact that the semiclassical levels were 
computed individually with an intrinsic error originating from both the precision of 
the numerical evaluation of the integrals and the finite precision of the Newton 
procedure. In figure 4 we have decided to show the distribution of Ai values. Indeed, 
this is more significant than simply showing A( against i. 

6. The statistics of levels 

Let us consider again the semiclassical quantization procedure, according to which 
the energies of the quantal states can be found from (2.1). A given state, labelled by 
quantum numbers (no ,  mo), arises from the intersection of the curve E = H ( J , ,  J2) .  
considered in the two-dimensional space of quantum numbers (m, n), with the lattice 
point (mo, no). It is just this crossing process that produces the increasing ordered 
sequence of semiclassical levels 

OS E , s  E 2 s . .  . S  E c , ,  . , (6.1) 

Then, in order to understand the structure of the spectrum (e.g. level spacings, 
degeneracies etc), it is crucial to know the shape of such a curve as the energy E is 
varied (see Berry and Tabor 1977). In our case this problem can be solved in the two 
limits E + 0 and E + m. Making reference to (4.2), we know that in the first limit the 
two non-trivial degrees of freedom behave as harmonic oscillators with frequencies 
w ,  = w2= w =a. Consequently, in this limit the levels are well described by 

(6.2) 

i.e. they occur at energies E = f iw( l+  I) ,  I = 0, 1, 2, .  . . with degeneracies I +  I. These 
groups of 1+1 degenerate levels are separated by gaps of order h, so that the mean 
spacing between levels, irrespective of the degeneracies, is of order f i2 f  E. Let us note 
that, with respect to this mean spacing, the levels arrive at ever-increasing intervals in 
ever more degenerate groups. However this description is valid only in the limit E -* 0. 
As soon as the energy is slightly increased the above degeneracies are broken and the 
spacings between the levels belonging to a given group increase linearly, according to 
general perturbation theory arguments. This can also be understood by the fact that 
the contours of constant energy in the plane of quantum numbers get a non-zero 
curvature as energy increases, and the crossing process is consequently modified. A 
qualitative idea of the rate at which the curvature moves away from zero can be 
obtained from figure 5, showing some contours of constant E (for Os E s 6 6 )  in the 
(m, n) plane, obtained numerically by projecting several intersections of the two- 
dimensional energy surface with horizontal planes onto the space of (positive) quantum 
numbers. In this direction, one can also understand qualitatively the mechanism of 
level crossing, which can always be observed in the spectrum of an integrable system 
when a given parameter is vaned (harmonic oscillators provide an exception in this 
respect). 

Let us start from an energy value where the system is very close to be harmonic, 
so that the corresponding contour in the (m, n )  plane is nearly a straight line (see 
figure 5 ) .  Introducing a control parameter which changes smoothly the strength of the 
potential or, equivalently, on varying f i  continously, the energy contour will smoothly 
change its curvature (in our case the orientation is preserved by symmetry) so that the 

E,,, = hw(m + n + I )  
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Figure 5. Contours of constant energy, for O <  E <66, in the space of the semiclassical 
quantum numbers m and n. 

lattice points on a m + n = consf line are crossed sequentially as energy increases. 
Thereafter, there will typically be a value of h where the contour cuts two lattice points 
located on two successive m + n = consf lines, giving rise to a crossing between levels 
belonging to different harmonic groups. This behaviour is clearly exhibited in figure 
6 .  Notice that in the diagonalization procedure described in section 3, one cannot see 
whether two levels have actually crossed, as they are automatically ordered by their 
amplitude. However, from the semiclassical quantization we can compute the corre- 
sponding quantum numbers and thus identify a level crossing unambiguously. 

6.5 

6.0 

5.0 

I- 

0.15 0.2 0.1 
h 

Figure 6. The energies of 40 successive levels as a function of f i  
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Now, introducing the function N ( E ) ,  equal to the number of levels E, which are 
less than E, one naturally expects that, as E increases, the mechanism of overlap 
between independent groups of levels will progressively change the behaviour of N (  E 1: 
from the quasi-harmonic situation, where N (  E) is well described by the regular staircase 

to the high!y non!ine.r regime, where IV!E)  behaves as a random f.ndion (Berry and 
Tabor 1977). In order to describe this randomness it is convenient to study the clustering 
distribution P , ( k )  (see Sinai 1990), namely the probability that choosing E at random, 
the interval (E, E + I )  contains k levels. Another, more customary, indicator is the 
spacing distribution P ( s ) ,  defined in such a way that P ( s )  d s  gives the probability that 
the spacing of a randomly chosen pair of neighbouring levels will be between s and 
s+ds,  where s is measured as a fraction of the mean spacing at the energy considered. 

In our case, we expect that when the energy is sufficiently high, i.e., far above the 
harmonic region in the spectrum, the clustering distribution is Poissonian, 

I* 
P , ( k )  = e'- 

k !  (6.4) 

In figures 7 and 8 one can observe a strong numerical evidence of this behaviour. 
These statistical features of the spectrum appear to be universal for the (non-generic) 
class of those systems for which the EBK quantization procedure is applicable (Berry 
and Tabor 1977), even though the precise mechanism underlying this behaviour remains 
to be clarified in a unified way. However, since the harmonic system provides an 

1 " " l " " l " "  

I 0.20 

0.15 - 
-L - 
2 

0.10 

0.05 

~ / . " V t r - * I  I- - - .  h - ,  U-, I I 

0 10 20 30 40 

k 
Figure 7. The clustering distribution functions P , ( k )  for r=0.1, 0.2, 0.3, ... ,0.7, and 
h =0.1. It has been computed from the first 15000 semiclassical levels, after discarding 
the lowest 1000. 
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l " " 1 " " l " " I " l  

Figure S. The level spacing distribution P ( s ) ,  computed with the same data of figure 7. 

exception in this respect, also the first part of the Toda spectrum, which represents a 
slight perturbation of (6 .2 ) ,  does not show the Poissonian behaviour. The latter sets 
in only when different groups of levels with m + n =constant overlap strongly. As a 
matter of fact, figures 7 and 8 represent only this region. 

We can partially understand the mechanism leading to the strong clustering property 
exhibited in figure 7, showing in particular that in the limit of very high energies, this 
can be related to the degeneracy structure of the sequence of levels (6.1). To this end, 
let us consider the contour plot of the potential (3.1); see figure 9. For small values 
of U and U, the equipotential contours are nearly circular, as expected. For larger 
values of V(u, U), the deviation from the harmonic oscillator potential is significant 
and, in the limit E -* m, the contour describes an equilateral triangle. 

'I 10 

5 i 
V 

-10 I,, , , , , , , , , , , , , , , , , , , , I , ,  , j 
-16 -10 -6 0 6 10 I6 

U 

Figure 9. The equipotential lines ofthe Toda potential (4.1) 
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Then, as for E + 0 we have discussed our system in terms of two slightly perturbed 
harmonic oscillators, in the opposite limit, E + 00, we can consider it as essentially 
equivalent to a particle moving in a two-dimensional triangular billiard. 

The eigenvalues of an equilateral triangle of unit side have been obtained in by 
Lam6 (1852) and F’insky (1980), and for the Dirichlet problem they are given by 

(6.6) 
16v2 

9 
Am,n = - ( m 2 +  n 2 +  mn) .  

On the other hand, the asymptotic length of the sides of the triangles in figure 9 is 

L ( E )  + & log E a s E + m .  (6.7) 

This means that in this limit the eigenvalues of our system occur at energies given by 

8 2 h 2  
E(log E ) 2 = -  ( m 2 +  n2+mn) 

27 (6.8) 

that is, the asymptotic shape of the energy contours in the (m, n) plane is that of a 
portion of an ellipse, as shown schematically in figure 10. In polar coordinates this 
curve takes the form 

(6.9) 

where Os a s ?r/2 and k = (3/2)3/2(l/?rh). The two axes of the ellipse have size 

(6.10) 

respectively. 
It is worth mentioning that if one interprets (6.8) as a semiciassicai iormuia-iike 

(2.1)--it provides an implict relation between the energy and the action variables in 
the classical problem. 

Now, in the semiclassical approximation, the function N ( E )  can be decomposed 
as 

N ( E ) = f i ( E ) + N . , , ( E )  (6.11) 

Figure 10. The asymptotic shape of the energy contour in the (m, *)-plane 
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where the average term N ( E )  is a smooth function of E and N,,,(E) is a series of 
oscillatory corrections (Berry 1981). In our case, the first term is given by the number 
of lattice points contained in the intersection of the ellipse with the first quadrant (see 
figure IO). On the other hand it is easy to see that the area of this region is 

and thereby we obtain 

1 SA 
8 Tfi 

N ( E )  =y (log E ) * E  

(6.12) 

(6.13) 

which is nothing hut the Weyl formula, for w ( E ) / E  is proportional to the area of the 
triangle. We stress however that this result is strictly valid only as E +a. 

From (6.13) we have that the mean number of levels contained in ( E ,  E + r )  is 
proportional to r log E ( 2 f l o g  E ) / f i 2 ,  so that the mean spacing between levels shrinks 
as h2/ (log E ) 2  as E + m. The fact that the mean spacing is not simply a constant B( h2), 
as it is in any two-dimensional bound system, is a consequence of the unbounded size 
of the triangular billiard we are considering. 

Finally, a result obtained by Pinsky (1980) states that if one introduces the functions 

n k ( E ) = # { i ( E j s  E :  E,is k-folddegenerate} 

then for the modes of the equilateral triangle we have 

(6.14) 

i.e. the eigenvalues tend to have infinite degeneracy as E +CO. This means that, for a 
triangle of constant size, where the mean spacing is constant, the levels are increasingly 
degenerate and separated by increasingly large gaps. A similar picture occurs for the 
rectangular billiard (Berry 1981). For comparison, let us note that for the harmonic 
system one finds n ( E )  = [ E / h o ]  so that 

(6.16) 

that is, the degeneracy increases linearly with E. 
We argue that, at very high energies, where (log E ) /  E - 0,  the levels of the 

then provides the asymptotic mechanism responsible for the statistical properties 
observed in figures 7 and 8.  A more refined analysis of this mechanism, which would 
lead to a closer understanding of the underlying random process, implies the knowledge 
or, at least, a rigorous estimate of the function No,,( E). 

three-pa!?ic!e To& sys!em f.!!OK c!ose!y the b P h l V i O E  expressed by !6.!5!, %hi& 

7. Conclusions and perspectives 

In this paper we have studied the quantum analogue of the completely integrable 
three-particle Toda lattice. The comparison between canonical and semiclassical quan- 
tization has shown that the latter procedure provides an effective approximation scheme 
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in reproducing the statistical properties of the spectrum. This is in agreement with the 
results obtained by Sinai (1990) for the case of integrable two-dimensional geodesic 
flows. The observed equivalence between the two quantization schemes has allowed 
us to investigate the level clustering properties in terms of the crossing process of the 
energy contour in the plane of quantum numbers. We have discussed in detail the 
small and high energy limits where the system resembles an harmonic chain and an 
equilateral triangular billiard, respectively. In particular we have obtained strong 
evidence that far above the ground state the clustering distribution of levels obeys a 
Poissonian statistics. Such results hold true for different choices of f i ,  which is a free 
parameter in our model. 

A more systematic investigation on the dependence of such results when h is varied 
together with the analysis of nonlinear oscillator chains with more than three particles 
will be the subject of further studies. In particular we shall investigate these points 
also for non-integrable systems; in this perspective it will be interesting to consider 
the Fermi-Pasta-Uiam 01 and p modeis (Fermt et ai 1965). 
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